Problem 5188. Given $\triangle A B C$ with coordinates $A(-5,0), B(0,12)$ and $C(9,0)$. The triangle has an interior point P such that $\angle A P B=\angle A P C=120^{\circ}$. Find the coordinates of point P.

Proposed by Kenneth Korbin, New York, NY

Solution by Ercole Suppa, Teramo, Italy
Let us construct equilateral triangles $\triangle A B D, \triangle A E C$ externally on the sides $A B, A C$ of triangle $\triangle B A C$ and let denote by ω_{1}, ω_{2} the circumcircles of $\triangle A B D$, $\triangle A E C$. The point P is the intersection point of ω_{1}, ω_{2} different from O. In order to find the coordinates of D, E we use complex numbers. If we denote respectively by $a=-5, b=12 i, c=9$ the affixes of A, B, C we get:

$$
\begin{aligned}
& d=a+(b-a) e^{\frac{\pi}{3} i}=\frac{-5-12 \sqrt{3}}{2}+\frac{12+5 \sqrt{3}}{2} i \\
& e=a+(c-a) e^{\frac{\pi}{3} i}=2-7 \sqrt{3} i
\end{aligned}
$$

so the coordinates of D, E are $D\left(\frac{-5-12 \sqrt{3}}{2}, \frac{12+5 \sqrt{3}}{2}\right)$ and $E(2,-7 \sqrt{3})$.
The equations of ω_{1}, ω_{2} are:
$\omega_{1}: 169 \sqrt{3} x^{2}+169 \sqrt{3} y^{2}+(2028+845 \sqrt{3}) x+(-845-2028 \sqrt{3}) y+10140=0$
$\omega_{2}: 196 \sqrt{3} x^{2}+196 \sqrt{3} y^{2}-784 \sqrt{3} x+2744 y-8820 \sqrt{3}=0$
and, after some ugly calculations, we get

$$
P=\omega_{1} \cap \omega_{2}=\left(-\frac{2(-981+112 \sqrt{3})}{2353},-\frac{21(-896+263 \sqrt{3})}{2353}\right)
$$

